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A B S T R A C T   

Cerium dioxide (CeO2) nanoparticles were synthesized through sol–gel and hydrothermal methods, yielding 
materials with distinct properties. Characterization techniques including Fourier Transform Infrared Spectros
copy (FTIR), Ultraviolet–visible spectroscopy (UV–Vis), X-ray Diffraction (XRD), Raman spectroscopy, Cyclic 
Voltammetry (CV), Photoluminescence spectra (PL), Field Emission Scanning Electron Microscopy (FESEM), and 
Transmission Electron Microscopy with Selected Area Electron Diffraction (TEM-SAED) were employed to 
analyse the synthesized nanoparticles. The FTIR analysis revealed an absorption band at 475 cm− 1, while 
UV–Visible spectroscopy determined band gap energies of 3 eV and 3.16 eV for the sol–gel and hydrothermal 
methods, respectively. XRD analysis indicated crystalline sizes of 14.57 nm and 17.41 nm for the sol–gel and 
hydrothermal methods, respectively. Raman spectroscopy demonstrated active peaks at 464 cm− 1 for the sol–gel 
method and 463 cm− 1 for the hydrothermal method. Cyclic Voltammetry showcased different oxidation and 
reduction peaks, while Photoluminescence spectra provided insights into the excitation spectrum of CeO2 
nanoparticles. FESEM and TEM-SAED images revealed nano-sized spherical spongy CeO2 nanoparticles. 
Furthermore, the synthesized CeO2 nanoparticles exhibited promising photocatalytic degradation activity 
against methyl blue (MB) dye under sunlight irradiation, with degradation efficiencies of 92 % and 82 % for the 
sol–gel and hydrothermal methods, respectively. Additionally, gas sensing properties for various gases (ethanol, 
methanol, CO2, LPG, H2S, and NH3) were evaluated using domestic gas sensor systems, showing potential 
applicability across a broad temperature range from 50 ◦C to 350 ◦C.   

1. Introduction 

Cerium oxide (CeO2) is an active rare earth oxide stable and good 
electron acceptor, has excellent biocompatibility with approximately or 
no toxicity, is not very costly, and is environmentally friendly. Cerium 
has two oxidation states, tetravalent (Ce4+) and trivalent (Ce3+). 
Therefore, cerium oxide exists in two different oxides ((Ce2O3 (Ce3+) 
and CeO2 (Ce4+)) depending on the nature of the materials [1]. CeO2 
nanoparticles (NPs) have attained significant consideration in nano
medicine and other applications because of their promising use in bio- 
sensing [2], antibacterial [3], solar cell [4], corrosion inhibition [5], 
gas-sensing [6], photocatalytic activity [7], supercapacitor [8], biolog
ical sensors [9]. In the field of gas-sensing, because of its good chemical 

resistance, non-toxicity, safety, and reliability, cerium oxide is an n-type 
semiconducting and encouraging material used for sensing O2 at high 
temperatures remaining to its chemical stability and high diffusion co
efficient vacancies and one potential active or additive sensing material 
for monitoring explosive, poisonous and hazardous gases [10,11]. Such 
as NH3 [12], H2S [13], CO [14], C2H5OH [15]. Photocatalysis has been 
considered a green and effective approach to the elimination of envi
ronmental pollution [16]. Cerium oxide photocatalysts, including non- 
metal doping, dye sensitization, metal doping, coupling of semi
conductors, and polymer sensitization, are one of the most potential 
photocatalysts with UV–vis light response due to the rich in oxygen 
vacancies and are found to have incredible effects in photocatalysis 
[17,18]. By using synthesized CeO2 NPs, various dyes are used for the 
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photocatalytic activity, such as methyl orange (MO) [19], methyl blue 
(MB) [7], amido black [20], rhodamine B [21], tartrazine [22]. Cerium 
oxide nanomaterials are synthesized using various methods such as 
green synthesis [19], co-precipitation [7], chemical bath deposition 
[23], sol–gel [24], hydrothermal [25], spray pyrolysis [26]. 

To the best of our knowledge, no report on comparing the effects of 
synthesis parameters on structural and morphological features of CeO2 
NPs synthesized using sol–gel and hydrothermal methods and its 
resultant impact on optical properties, gas sensing properties, and 
photocatalytic activities has been published yet [27,28,29]. Hence, to 
find how chemical synthesis routes sol–gel and hydrothermal methods, 
control the structure and morphology of the synthesized particles and 
consequently the optical, gas sensing, and photocatalytic properties, the 
current study has been conducted. 

In the present work, CeO2 NPs were synthesized using sol–gel and 
hydrothermal methods and analyzed using various characterization 
techniques, such as XRD, UV–Vis, FT-IR, Raman, CV, PL, FESEM, and 
TEM-SAED. The synthesized CeO2 NPs by sol–gel method demonstrate 
outstanding gas sensing response and photocatalytic activity as 
compared to hydrothermal synthesized NPs when they are exposed to 
sunlight. 

2. Materials and methods 

2.1. Materials 

All reagents used were of AR Grade. Cerium nitrate (Ce 
(NO3)3).6H2O) of Sigma Aldrich (99.9 % purity) and Urea CO(NH2)2, 
Polyvinyl-Pyrolydine (PVP), Ammonia, Ethanol all of Merck Chemical 
(99.9 % purity) and Sodium Hydroxide (NaOH) of S.D fine (99.9 % 
purity) make have been used. Fig. 1.. 

2.2. Methods 

2.2.1. Synthesis of CeO2 NPs by sol–gel method 
CeO2 NPs were synthesized by the sol–gel method. Cerium precursor 

(0.1 mol) cerium nitrate (Ce (NO3)3).6H2O), (0.05 mol) Urea CO(NH2)2 
and (0.01 mol) Polyvinyl-Pyrolydine (PVP) were dissolved in 100 ml of 
deionized water. The initial pH was 3.4 acidic solution. This solution 
was stirred for 30 min. Then, an appropriate amount of ammonia was 
added dropwise. After stirring for 2 hrs, the color of the solution became 
purple and gradually changed into a pale-yellow color gel with a final 
pH of 11. The gel was collected by centrifugation and washed with 

ethanol under 11,000 Revolution per Minute (rpm). Finally, the gel was 
dried at 80 ◦C for 24 hrs, and the product was collected. The Ce3+ was 
oxidized into Ce4+ by O2 under the air atmosphere [24,30]. The product 
was annealed in a muffle furnace at 700 ◦C. 

2.2.2. Synthesis of CeO2 NPs by hydrothermal method 
CeO2 NPs were synthesized by hydrothermal method. Cerium pre

cursor (0.1 mol) cerium nitrate (Ce(NO3)3).6H2O were dissolved in 50 
ml of deionized water. The initial pH was 3.2 acidic solution. This so
lution was stirred for 60 min. Then, an appropriate amount of sodium 
hydroxide solution was added dropwise and stirred for 3 hrs, and its 
color became purple and gradually changed into a pale-yellow color 
solution with a final pH of 11. The suspension was transferred to 100 ml. 
Teflon-lined stainless-steel autoclave sealed and had a hydrothermal 
reaction at 150 ◦C for 24 hrs. The solution was collected by centrifu
gation and washed with methanol under the conditions of 11000 rpm 
[25 31,32]. Finally, the solution was dried at 80 ◦C for 24 hrs, and the 
product was collected and formed CeO2 NPs. The CeO2 NPs were 
annealed in a muffle furnace at 700 ◦C. 

2.3. Characterization 

The synthesized nanomaterial is characterized by X-ray Diffraction 
(XRD) (X-ray Source-Cu K alpha, Model-Miniflex 600, and make- 
Rigaku). The band gap energy was found by UV–Vis diffuse reflec
tance Spectrophotometer (model-2600 and Make-Shimadzu). Chemical 
bond interpretation and functional group detection by Fourier transform 
infrared spectrometry (FT-IR) model-IR Affinity-1 with diamond ATR 
and make Shimadzu) and Raman spectra (Invia Renishaw micro-Raman 
spectrophotometer). Morphological study by Field Emission Scanning 
Electron Microscopy (FESEM) (Carl Zeiss Model Supra 55 Germany). PL 
spectra study by JASCO Spectroflorometer (Model FP-8300 WRE) and 
TEM analysis done by JEOL JEM 2100 plus. 

2.4. Photocatalytic experiments 

The synthesized CeO2-NPs by sol–gel and hydrothermal methods 
have been employed for photocatalytic degradation of MB dye under 
direct sunlight irradiation in the month of May 2023 between 11.00 a.m. 
to 2.00p.m. The average intensity of sunlight was observed to be in the 
range of 810 W/m2 measured by using a sun meter (Make Solaron, 
Model-DSM 01). The 10 mg of catalyst (synthesized CeO2 sNPs by sol
–gel and hydrothermal method) was added into 100 ml, 10 ppm MB 

Fig. 1. Schematic representation of synthesized CeO2 NPs.  
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solution separately in 100 ml of distilled water, and 10 ppm MB dye 
aqueous solution was magnetically stirred in the dark for 30 min to 
achieve max adsorption [33]. Then, the suspension was kept under 
sunlight, and 10 ml volume was removed in a test tube covered with 
black paper every 30 min. The gradual color change from blue to 

colorless was observed during irradiation of sunlight. The Collected 
solutions were centrifuged to remove the catalyst. Absorption of the 
samples collected was measured using a UV–vis spectrophotometer The 
percentage of MB degradation was calculated by following equation 
[7,34]. 

Photocatalytic degradation (%) = A0 − At/A0 × 100 (1)  

where, A0 is initial in absorbance and 
At is absorbance at time t. 

2.5. Gas sensing 

The gas sensing performance of CeO2 NPs was studied by preparing 
their thick films by using the screen-printing method. The response of 
the sensor was calculated by the following relation [12]. 

S % = Ra − Rg /Ra × 100 (2)  

where Ra is the resistance of the air 
Rg is the resistance in the presence of gas. 
For sensing measurements, liquid ammonia was used to produce 

ammonia gas. The part per million (ppm) concentration of ammonia was 
calculated by static distribution liquid gas using the following relation 
[35]. 

Concentration (ppm) = 22.4 ρT V ′/ 27MV x1000 (3)  

where, 
ρ - density of liquid (g/mL), V’- volume of liquid (μL), T- testing 

temperature (K), 
M- molecular weight of gas (g/mol), V- volume of the testing 

chamber. 

3. Results and discussion 

3.1. Powder X-ray diffraction studies 

The XRD pattern of synthesized CeO2 NPs obtained is shown in Fig. 2 
(a,b) XRD pattern of CeO2 by sol–gel and hydrothermal method the 
diffraction intensities were recorded from 20◦ to 80◦ in Fig. 2(a) 
consequential of crystals planes at 2θ of 28.68◦, 33.34◦, 47.60◦, 56.40◦, 
59.26◦, 69.61◦, 76.86◦, 79.20◦ which correspond to crystal planes 
(111), (200), (220), (311), (222), (400), (331), (420) and Fig. 2(b) 
for the hydrothermal method 28.43◦, 33.09◦, 47.33◦, 56.42◦, 59.00◦, 
69.36◦, 76.86◦, 79.20◦ correspond to crystal planes (111), (200), 

Fig. 2. X-ray diffraction pattern of CeO2 NPs for a) sol–gel and b) hydrother
mal Method. 

Fig. 3. W-H plots of CeO2 NPs by a) sol–gel and b) hydrothermal method.  
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(220), (311), (222), (400), (331), (420) and XRD pattern of CeO2 
synthesized by Hydrothermal and Sol Gel method matches exactly with 
JCPDS File No. 01–081-0792 which confirms cubic phase (fcc) with 
specific group Fm3m and lattice parameters a = 5.4142 A◦, V = 158.55 

(A◦)3, Z = 4 and calculated density (d) = 7.21 g/cm3 [23]. 
[a]. The average crystallite size of synthesized CeO2 was calculated 

by using Debye- Scherer’s formula and the Williamson–Hall (W–H) 
method [19 36]. 

I Debye- Scherer’s formula 

D = 0.9λ/βcosθ (4)  

where D is the crystallite size, λ- is the X-ray wavelength of CuKα radi
ation (0.154 nm), β-is the full-width half maximum (FWHM) of the peak, 
θ is the diffraction peak angle. The average crystalline size of the syn
thesized CeO2 NPs by sol–gel method was 14.57 nm and by hydrother
mal method 17.41 nm. No other impurity peak is present, which 
represents the purity of the CeO2 NPs by sol–gel and hydrothermal 
method [22]. 

ii Williamson–Hall (W–H) method 
The total peak broadening is the sum of the contributions of the 

crystal size and the strain present in the material. From Fig. 3 The W–H 
equation for the uniform determination model is given by [37]. 

β(hkl)cosθ(hkl) = k × λ/Dv4ε sinθ(hkl) (5)  

where, β(hkl) s is the FWHM, θ is Bragg’s diffraction angle, k is the shape 
factor, λ is the wavelength of radiation, Dv is the volume-weighted 
crystallite size, and ε is the lattice strain. The crystalline size is ob
tained from the intercept value of the plot [38]. The crystalline size of 
the synthesized CeO2 NPs by sol–gel was found to be 30.14 nm and by 
hydrothermal method 34.75 nm. 

[b]. The lattice parameter calculated from the (111) reflection plane 
of the synthesized CeO2 NPs is calculated by the formula [19]. 

a = dhkl

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + K2 + l2

√
(6)  

where d is the spacing and (h k l) are the miller indices, the calculated 
lattice parameters of synthesized CeO2 NPs by sol–gel method and 

Fig. 4. UV–Vis DRS spectrum and Tauc plot of CeO2 NPs for a) sol–gel and b) Hydrothermal method.  

Fig. 5. (a,b) FT-IR spectra of CeO2 NPs by a) sol–gel and b) hydrother
mal method. 
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hydrothermal method a = 0.5254 nm due to the presence of oxygen 
deficiency in CeO2 NPs and α = β = γ = 90◦ [39]. 

3.2. Uv–visible DRS analysis 

Fig. 4(a–d) gives the UV–visible Diffused Reflectance Spectra of the 
synthesized CeO2 NPs by sol–gel and hydrothermal method. The UV–Vis 
absorption edge provides a desirable estimation of the band gap energy 
of synthesised material. From absorption data, the band gap energy (Eg) 
of the prepared samples was calculated using Tauc’s equation as given 
below [3]. 

(αhϑ)1/n = A
(
hϑ − Eg

)
(7)  

Where α is the absorption coefficient, and n is a constant that depends on 
the transition probability. Fig. 4 (b,d) shows the variation of (αhʋ)2 vs 
energy (hʋ). Putting energy axis x  = 0, the band gap energy Eg can be 
deduced by generalizing the linear portion of the graph [40]. The energy 
band gap CeO2 NPs synthesized by the sol–gel was found to be 3 eV, and 

by the hydrothermal method, the band gap energy was found to be 3.16 
eV. 

3.3. Fourier-transform infrared spectroscopy 

It is well-accepted that FT-IR spectra can be used as an essential 
analytical tool to identify the functional group present in the materials. 

Fig. 5(a,b) the FTIR spectrum of CeO2 NPs synthesized by the sol–gel 
and hydrothermal method exhibited the absorption band at around 475 
cm− 1, which is assigned to the strong stretching vibration of Ce-O, The 
band at 848 cm− 1 corresponds to metal–oxygen bond, Small peaks at 
around 3376 cm− 1 and 1555 cm− 1, which are related to the O–H 
stretching vibration mode and bending vibration of associated water, 
respectively which indicates the presence of residual water [15]. In 
addition, band around 1300 cm− 1 has been observed in CeO2 synthe
sized by the hydrothermal method indicating presence of residual 
organic matter on the surface. Table 1 shows absorption peaks of FTIR 
spectrum of CeO2 NPs by sol–gel and hydrothermal method. 

3.4. Raman spectra studies 

The raman spectrum of CeO2 NPs synthesized by sol–gel and hy
drothermal method is shown in Fig. 6(a,b) The raman shift range is from 
200 to 800 cm− 1. For the CeO2 NPs by sol–gel method, an active raman 
peak with a strong and broad intensity mode was formed at 464 cm− 1 

and for the hydrothermal method, it is about 463 cm− 1. In this case, F2g 
is the lattice mode of the spectra, and this peak is directly linked to the 
symmetrical stretching mode of the Ce–O bond, confirming the forma
tion of a fluorite-type structure. This vibration is extremely sensitive to 
the calcination temperature-induced instability in the oxygen lattice 
sites [41,42]. 

3.5. Cyclic voltammetry 

From Fig. 7. In cyclic voltammetry, the sweep rate of 10 to 50 mV/s 
was used, the potential range was altered from − 1.2 V to − 0.1 V, and the 
oxidation and reduction peaks were observed at a potential range of 
− 0.55 V The sweep rate 10 mV/s, 20 mV/s, 30 mV/s, 40 mV/s, 50 mV/s 
corresponding to the data sampling time 166 ms, 103 ms, 78 ms, 64 ms, 
54 ms. As the sweep rate increases, sampling time decreases [43,44]. 

Table 1 
Assignments for absorption bands/peaks of FTIR spectrum of CeO2 NPs by sol
–gel and hydrothermal method.  

Bands/peaks (cm− 1) Assignments 

475 strong stretching vibration of Ce-O 
848 Ce-O bond 
3376 O–H stretching vibration mode 
1555 O–H bending vibration mode 
1300 Presence of residual matter  

Fig. 6. (a,b) Raman spectra of CeO2 NPs by a) sol–gel and b) hydrother
mal Method. 

Fig. 7. Cyclic voltammogram of CeO2 NPs.  
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3.6. Photoluminescence spectra (PL) 

In Fig. 8(a,b), the excitation spectrum of CeO2 NPs formed through 
(a) sol–gel and (b) hydrothermal methods is presented. The corre
sponding photoluminescence (PL) spectrum of the as-formed CeO2 NPs 
is also depicted. Notably, the PL spectrum reveals three predominant 
emission peaks: a substantial band at 616 nm, a minor band at 741 nm, 
and faint blue bands at 497 nm. The concentration of CeO2 NPs has been 
identified as a factor influencing the blue shift peak in the PL spectrum. 
To elucidate these observations, it is proposed that the charge transfer 
from the 4f band to the valence band of CeO2 NPs plays a crucial role. 
The diminished intensity of the green emission peak in this sample is 
likely attributed to the low density of oxygen vacancies during the sol
–gel and hydrothermal fabrication processes. Additionally, the subtle 
blue and weak blue-green emissions in this sample may be linked to 
surface defects in the CeO2 NPs [45]. 

3.7. FESEM and EDAX analysis 

Fig. 9(a,b,c,d) and Fig. 10(a,b,c,d) shows the FESEM image with 
EDAX spectra and compositional data of CeO2 NPs synthesized by sol
–gel and hydrothermal method respectively. Fig. 9(a,b) and Fig. 10(a,b) 
show nanosized spherical spongy CeO2 nanoparticles with irregular 
clusters with porous nature [46]. Fig. 9(c) and Fig. 10(c) EDAX spectrum 
shows only Ce and O components without impurities. Fig. 9(d) and 
Fig. 10(d) show the compositional data of Ce and O [47,18,48]. It was 
found that CeO2 NPs by sol–gel are more oxygen-deficient than the 
hydrothermal method. Oxygen deficiency is important in the gas- 
sensing mechanism. 

Fig. 8. PL of CeO2 NP by (a) sol–gel and (b) hydrothermal method.  

Fig. 9. (a,b,c,d) FESEM images (a&b), EDAX spectrum (c), and compositional data (d) of CeO2 NPs by sol–gel method.  
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3.8. TEM –SAED 

The image is presented in Fig. 11(a,b,c,d,e,f,g,h) shows the TEM 
analysis, the size distribution, the interplanar distance measurement, 
and the SAED of the sol–gel and hydrothermal method. Fig. 11(a,b) 
shows the morphology of the CeO2 NP spherical shape. Furthermore, the 
CeO2 NPs by sol–gel smallest diameters and hydrothermal method 
largest diameters. To further analyse the morphology of the nano
particles. The size distribution is shown in Fig. 11(c,d) the CeO2 NPs by 
sol–gel and hydrothermal samples have an average particle size of 15.96 
and 17 nm and respectively [49]. 

The Fig. 11(e,f) shown on a smaller scale (10 nm). In these images, 
both the fingerprints of CeO2 NPs and their similar spherical shape can 
be observed and the interplanar distance of the samples was calculated, 
where all two showed to be 0.318 nm and 0.315 nm typical distance 
from these NPs. this distance corresponds to the (111) plane, being 
verified using the XRD [50]. 

Finally, the images Fig. 11(g,h) show the SAED diffraction patterns, 
presenting the ring (1, 2, 3, 4, 5, 6, 7, 8) which based on the JCPDS file 
no. 01–081-0792 corresponds to the cubic crystal structure of CeO2 NPs 
by sol–gel and hydrothermal method [51]. 

3.9. Photocatalytic studies 

CeO2 is having high refractive index, optical transparency in visible 
region, oxygen storage capacity, chemical reactivity as well as absorbs 
larger fraction solar energy spectrum. These factors makes CeO2 as a 

good photo catalyst for various processes. It’s photocatalytic activity can 
be improved by changes in morphology, doping, coupling with other 
semiconductors and combination with carbon supporting material. 
Herein we have attempted to improve photocatalytic activity on the 
basis of morphology [52]. 

The rise of environmental pollution at an enormous level due to 
emissions of toxic pollutants by dissimilar industries caused numerous 
hazardous health effect[53]. Among these pollutants, organic com
pounds such as azo dyes (MB) have become very dangerous due to their 
harmful impact on the environment and human health [7,54]. There
fore, removing MB dye from effluent is essential to protect the 
environment. 

The photocatalytic activity of the synthesized CeO2 NPs by the sol
–gel and hydrothermal methods was studied for the degradation of MB 
dye under sunlight irradiation [19]. In Fig. 12(a,b) The absorption 
spectra of the MB solution has been monitored and recorded at regular 
intervals (0, 30, 60, 90, 120, 150, 180 and 210 min). The rate of 
degradation studied in terms of decrease in absorption of MB solution at 
λmax = 664 nm. 

3.9.1. Mechanism of photocatalytic decay 
The mechanism of photocatalytic reaction catalysed by synthesized 

CeO2-NPs by the sol–gel and hydrothermal method is shown in Fig. 12(f) 
When the CeO2-NPs are radiated by sunlight, the electrons (e-) from the 
valence band transfer to the conduction band by absorbing the energy, 
and the electron (e -cb) reacts with absorbed molecular O2 reducing su
peroxide radical O2

–. The holes (h+
Vb) can produce OH• free radicals and 

Fig. 10. (a,b,c,d) The FESEM images (a&b), EDAX spectrum (c), and compositional data (d) of CeO2 NPs by hydrothermal method.  
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holes react with water and generate OH. radicals. The formation of holes 
and electrons in the valence band and conduction band plays a signifi
cant role in the degradation of the dye under sunlight [55,56,57]. The 
mechanism of photocatalysis using semiconductors is attributed to the 
oxidative stress induced by Oxidative Reactive Species (ORS) such as 
superoxide radicals O2, hydroxyl radical OH. and h+[58] The complete 
photocatalytic reaction of the CeO2 NPs and the MB dye could be written 
as follows. 

CeO2 + hϑ → CeO2(e−CB + h+
VB) (8)  

h+
VB + H2O → H+ +OH. (9)  

MB + OH.→ H2O+CO2 +mineral acid (10)  

e−CB + O2 + CO.
2 (11)  

O•
2 +MB → H2O+CO2 +mineral acid (12) 

Fig. 13 depicts the position of valence band and conduction band as 
well as redox potential various possible process happening at surface of 
the CeO2 catalyst. It reveals from position the redox potential of species 
involved in the degradation of MB that potential of VB (CeO2) is more 
positive redox potential of the species and potential of CB (CeO2) is more 
negative than redox potential of species[60]. Product of the degradation 

Fig. 11. (a,b) TEM images, (c,d) particle size, (e,f) lattice fringe, (g,h) SAED pattern of CeO2 NPs by sol–gel and hydrothermal method.  
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are H2O, CO2 and mineral acids [59]. 

3.9.2. Kinetic studies 
Fig. 12(c) showed a decrease in the absorbance of dye over time. A 

simplified Langmuir-Hinshelwood (L-H) kinetic model was used to 
describe the photocatalytic degradation rate of MB [21]. 

The reaction kinetic may be expressed by the following equation 

ln(A0/A) = Kr t (13)  

Where, Kr is a constant rate of reaction, A0 is the initial concentration of 
MB, A is the final concentration of MB at time t in min. 

The kinetics of the reaction were investigated by logarithm of con
centration ratio (A0/A) versus the irradiation time plot shown Fig. 12(d) 
by sol–gel and hydrothermal method [22 61]. From the linear fitting 
curves of ln (A0/A) vs irradiation time t, the MB degradation rate con
stant (kr) has been calculated as by sol–gel method is 0.010686 min− 1 

and hydrothermal method 0.009077 min− 1. sol–gel has the highest 

Fig. 12. (a,b) absorption spectra of MB dye degradation catalyzed by CeO2 NPs by sol–gel and hydrothermal method, (c) absorbance, (d) ln(A0/A) versus the 
irradiation time for sol–gel and hydrothermal method of MB, (e) degradation (%) of MB dye for sol–gel and hydrothermal method, (f) schematic diagram showing the 
photocatalytic mechanism of synthesized CeO2 NPs. 
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degradation rate than the hydrothermal method. Fig. 12(e) degradation 
(%) of MB dye for sol–gel 92 % and hydrothermal method 82 %. Table 2 
shows comparison of present investigation and reported studies of 
various CeO2 based NPs. 

3.10. Gas sensing properties of CeO2 NPs 

Fig. 14(a,b) shows the gas response of CeO2 NPs by sol–gel and hy
drothermal method to various gases such as ethanol, methanol, CO2, 
LPG, H2S, and NH3 at different operating temperatures ranging from 
room temperature (RT) to 350 ◦C [66]. It showed maximum response to 
NH3 gas at 200 ◦C for material synthesized by sol–gel with better 
response than material synthesized by hydrothermal method.Fig. 15.. 

Fig. 14(c) shows the selectivity profile of CeO2 NPs by sol–gel and 
hydrothermal method which indicated that the sensor exhibited higher 
response to NH3 against other tested gases. It means it is highly selective 
to NH3 at gas concentration of 100 ppm. From comparing to two 
methods of preparation, sensor prepared from sol-gel technique showed 
maximum response to NH3 gas at 200 ◦C at 100 ppm gas concentrations 
which was the response found to be 92.34 and for hydrothermal method 
gas response was 68.71. The NH3 shows better sensing performance 
because of the lone unshared pair of electrons in the NH3 molecule 
whereas, ethanol, methanol, CO2, LPG, and H2S don’t have unpaired 
electrons [35]. Therefore, a decrease in the sensing resistance is more 
with exposure to NH3 gas in comparison with the other target gases. 

The response of CeO2 NPs to NH3 gas concentration, as depicted in 
Fig. 14(d), was investigated employing both sol–gel and hydrothermal 
methods at an operating temperature of 200 ◦C. As the concentration of 
NH3 gas varied from 10 to 140 ppm, it was observed that the response 
value increased for all samples until it reached 100 ppm at 200 ◦C. 
Beyond this concentration, the rate of response increase entered a 
saturation phase. This behavior can be elucidated by considering that at 
lower gas concentrations, there were sample sensing sites available on 
the surface of the films[67]. However, as the gas concentration 
increased, the surface coverage of gas molecules reached saturation 
levels, limiting the availability of additional sensing sites. Consequently, 
this led to a plateau in gas sensitivity[68]. In essence, the active sensing 
region of the sensor was determined to be around 100 ppm. The gas 
response for the sol–gel method was measured at 92.98, while for the 

hydrothermal method, it was 68.79 [35]. 
The duration it takes for a sensor to achieve 90 % of the maximum 

alteration in its resistance when exposed to the target gas is termed as 
the response time [69]. Conversely, the period needed for the sensor to 
restore 90 % of its initial resistance is referred to as the recovery time of 
the sensor. In Fig. 14(e) The CeO2 NPs by sol–gel method has a response 
time of 31 sec. and a recovery time of 18 sec. and fig.16 (f) hydrothermal 
method response time is 32 sec. and recovery time 21 sec. n-type 
semiconductors with outstanding gas-sensing properties. The conduc
tivity of the metal oxide changes due to the adsorption or desorption of a 
gas on the surface of the substance [70]. 

3.10.1. Gas sensing mechanism 
Based on our previous research, the enhanced gas sensing capabil

ities of CeO2 nanoparticles synthesized through the sol–gel and hydro
thermal methods can be attributed to their reduced particle size, 
abundant oxygen vacancies, and porous structure. In our investigation, 
we observed a sequential reaction between NH3 and oxygen species, 
beginning with the adsorption of oxygen onto the material’s surface. 
Subsequently, the absorbed oxygen captured free electrons, leading to 
the formation of oxygen anions [35]. 

O2(air)→O2(ads) (14)  

O2(ads) + e→O−
2 (15)  

O2(ads) + 2e→2O− (16)  

O2(ads) + 4e→2O2− (17)  

Two NH3 gas sensing mechanisms were identified in our study. The first 
mechanism involves the interaction between adsorbed –H2O and NH3 
molecules with H2O molecules adsorbed on the CeO2 nanoparticles’ 
surface. This interaction leads to the generation of NH4

+ and OH–, 
resulting in a reduction in electrical resistance[71]. This process can be 
described by the following equations [35]. 

NH3(gas)→NH3(ads) (18)  

NH3(ads) +H2O⇄NH+
4 +OH− (19)  

Another is pertinent to adsorbed O-. As electron-donating NH3 gas was 
adsorbed, electrons were then released into the conduction band of the 
CeO2 nanoparticles as the following equation [12]. 

4NH3(ads) + 3O−
2(ads)→2N2 + 6H2O+ 3e− (20)  

The interaction of gas molecule on the surface of sensing material leads 
to the release of electron into the conduction band of CeO2 which results 
in a reduction in electrical resistance. and there after transformation 
back to metal oxides in the recovery process by heating the sensor to a 
relatively higher temperature at 450 ◦C which results recovery to metal 
oxide [72]. 

4. Conclusion 

In this investigation, CeO2 NPs were synthesized using both sol–gel 

Fig. 13. Band position (valence band top and conduction band bottom) of 
cerium dioxide (CeO2) compared with several selected redox potentials of 
processes occurring at the semiconductor surface[59]. 

Table 2 
Comparison of present investigation and reported studies of various CeO2 based NPs.  

Catalyst Dye Synthesis method Catalyst concentration Dye concentration Time duration (min) Efficiency (%) References 

CeO2 MB combustion method 50 mg 5 ppm 210 95 [62] 
CeO2 MB co-precipitation method 0.6 mg/L 10 mg/L 240 76 [63] 
CeO2 MB biosynthesis method 1 g L− 1 60 mg L− 1 180 93 [64] 
CeO2 MB combustion method 100 mg 5 ppm 180 86 [65] 
CeO2 MB Hydrothermal method 10 mg 10 ppm 210 82.24 Present work 
CeO2 MB Sol-gel method 10 mg 10 ppm 210 92.12 Present work  
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and hydrothermal methods and thoroughly characterized with the help 
of range of analytical techniques including UV–Vis spectroscopy, FTIR, 
XRD, Raman spectroscopy, CV, PL spectroscopy, FESEM-EDAX, and 
TEM-SAED. Regarding photocatalytic performance, the synthesized 
CeO2 NPs demonstrated significant degradation of methylene blue 
under natural sunlight. Specifically, the sol–gel method yielded a 
degradation efficiency of 92 %, surpassing the 82 % achieved with the 
hydrothermal method over a 210 min. Additionally, gas sensing prop
erties of the CeO2 NPs were evaluated across various gases such as 
ethanol, methanol, CO2, LPG, H2S, and NH3. Notably, NH3 exhibited the 
highest response. However, when comparing the sensing performance 
between the two synthesis methods, CeO2 NPs synthesized via the sol
–gel method outperformed those synthesized via the hydrothermal 

method, showcasing superior gas sensing capabilities. In summary, CeO2 
NPs synthesized through the sol–gel method exhibited outstanding gas 
sensing response and photocatalytic activity compared to those syn
thesized through the hydrothermal method. This underscores the po
tential superiority of the sol–gel synthesis route for applications in gas 
sensing and environmental remediation. 
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